
1 INTRODUCTION 

1.1 Expert judgment 
Historically, decision-makers have used expert 
opinion to supplement insufficient data. Relatively 
cheap and virtually inexhaustible (Cook, 1991), 
experts greatly influence decisions in key subject 
matters such as political, financial, legal, and social 
issues. Additionally, a major source of information 
in estimating the parameters of risk and reliability 
models is expert judgment. Cases involving new 
process or product design, very rare events, and 
proceedings that are beyond our direct experience, 
call for the use of expert opinion as a surrogate 
information source. The evaluation of expert 
judgment quality starts with a clear definition of 
‘expert(s)’. For the purpose of this paper, an ‘expert’ 
is broadly defined as a field professional that will 
assist the analysts or decision makers to determine 
the unknown quantity of interest. Besides expressing 
their subjective judgments directly, experts can use 
prototypes, models, simulations, destructive and 
nondestructive tests (among other tools) to gather 
information, acquire data, gain pertinent practical 
knowledge, and to carry out a specified set of tasks 
proficiently. The association of expert’s attributes to 
the quality of expert judgments is acknowledged in 
most of the studies. Attributes are the characteristics 
and qualities relating to an individual. Specific 
attributes are used to differentiate between experts 
and novices. However, the identification and 
selection of experts is subjective; a unique 

perception of the qualifications is reported in 
different studies to name an individual the ‘expert’. 
According to Booker and Meyer (1996), expert 
opinion is used in two ways: 
[1] Structuring of technical problems including the 

determination of relevant information for 
analyses such as key input and output variables 
as well as proper assumptions and evaluation 
techniques.   

[2] Direct qualitatively or quantitatively estimates of 
the unknown of interest, characterize 
uncertainty, and determine weighting factors for 
combining data sources 

This study focuses on the use of experts’ 
quantitative estimate of the unknown. The issues 
surrounding the use of expert opinion fall into two 
broad categories:  
a. Elicitation of opinions: selection of experts, 

number of experts, elicitation process, etc. and, 
b. Use of elicited opinions: how to use and 

aggregate data provided by the expert.   
This paper considers only the use of elicited experts’ 
opinions reported as point estimates. An opinion is 
not a fact or verified by an experiment, but a 
person's assessment of a subject or judgment 
towards something, and therefore, contains some 
degree of uncertainty often expressed as error.             
The potential negative impact of expert error on vital 
tasks forces the decision makers to take into 
consideration the quality level of the judgment.          
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ABSTRACT: Expert judgment is a major source of estimating the parameters of risk and reliability models. 
However, expert opinion is subjective and contains some degree of uncertainty, often expressed as error.             
The negative impact of expert’s error on vital tasks forces the decision makers to assess the quality of elicited 
opinions and perhaps make some adjustments to estimates with the hope of improving their accuracy.               
The primary focus of this paper is to reduce the inaccuracy of expert’s point estimates using formulated 
likelihood functions from relative errors of experts’ judgment. The results of the study reveal an overall 
improvement in the accuracy of estimates, applying likelihood distributions in the Bayesian framework for 
homogenous and nonhomogenous empirical data. 
 



The poor quality of expert judgment can be broadly 
classified as those shortcomings associated with 
attributes defining an expert, the estimation 
procedure, the elicitation process (formal vs. 
informal), technical calibration and aggregation 
(performance measures of experts and expertise), 
and available information about the unknown. The 
issue being considered in this research is the 
feasibility and value of empirically-based calibration 
of experts within the Bayesian formalism. The main 
problem in applying the Bayesian technique is the 
complications associated with the development of a 
suitable likelihood function. This paper presents the 
development and use of likelihood functions based 
on relative errors of experts’ estimates. Overall, an 
investigation of several practical questions about 
experts’ opinion in the Bayesian framework is 
conducted: 
[1] Empirical assessment of expert error in different 

disciplines 
[2] To uncover whether the use of formulated 

likelihood functions would reduce future 
prediction errors for homogenous and 
nonhomogenous data 

1.2 Bayesian formalism 
Conceptually, the application of the Bayesian 
method to utilize the expert opinion is simple.          
The expert’s estimate is treated as a piece of 
evidence about the unknown quantity of interest. 
This estimation is used to update the analyst’s own 
(prior) knowledge through Bayes’ theorem.            
Prior distributions are used to describe the 
uncertainty surrounding the unknown. After 
observing the data (in this case, the expert opinion), 
the posterior distribution provides a coherent post 
data summary of the remaining uncertainties. 
Mathematically speaking:  
 
                                    (1) 

 
 
Here, u is the unknown quantity of interest, u′ is the 
set of the experts’ opinions, π(u|u′) is posterior 
distribution expressing the analyst’s updated 
knowledge about the unknown, L(u′|u) is the 
likelihood of the estimate given the true value of the 
unknown quantity, and π0(u) is the analyst’s prior 
knowledge about the unknown (prior to obtaining 
the opinion of the experts). The first formal frame of 
the Bayesian method for use of expert opinion was 
presented by Morris (1974, 1977). His work fully 
establishes the foundations for the Bayesian 
paradigm in the analysis of expert judgment. 
Building on Morris’s method, Mosleh and 
Apostolakis (1986) proposed the use of ‘Additive’ 

and ‘Multiplicative’ error models for constructing 
the likelihood functions, expressing the experts’ 
assessments as the sum (or ratio) of the true value of 
unknown quantity and an error term. Still, the main 
problem in applying the Bayesian technique remains 
as complications associated with the development of 
a suitable likelihood distribution. This function is a 
probabilistic model for data and must capture the 
interrelationships among estimates and the quantity 
of interest. Particularly, it must account for the bias 
of the individual estimates and be able to model 
dependencies among experts.           

1.3 Collection and Characterization of Data 
Data refers to a collection of organized information, 
usually the result of experience, observation or 
experiment. Data can be in the form of nominal, 
ordinal, interval and ratio, depending upon objective 
of data collection and analysis. Generally in the 
assessment of uncertainty, subjective data can come 
in the form of expert’s estimate, historical 
knowledge of the unknown as well as evidence on 
the credibility, applicability and relevance of the 
judgment. Experts provide qualitative information or 
quantitative estimates in form of probability 
distribution, point estimate, range or limitation, 
statement or partial evidence of true values. The 
search for the accuracy of expert opinion began with 
a general survey of the literature, publications, books 
and referred sources. The wide literature search 
included databases such as Econpapers, Elsvier, 
IEEE Digital Library, and UMCP Library. To 
conduct this study, over 1500 publications analyzing 
or reporting the use of expert opinion since 1930s 
are examined in a three-year time frame, 
accumulating over 1900 experts’ point estimates in 
27 different disciplines. In addition, TU Delft 
University Excalibur Database is used, which reports 
the assessment of over 800 experts on more than 
4000 variables, representing about 80,000 elicited 
questions. These reported estimates were made in 
various areas, such as nuclear applications, the 
chemical and gas industries, toxicity of chemicals, 
external effects (pollution, waste disposal sites, 
inundation, volcano eruptions), aerospace sector and 
aviation sector, the occupational sector, the health 
sector, and the banking sector. Many discarded 
sources contained no report of actual data such as 
expert estimates, true values, or an indication of 
formal elicitation process. The collected data were 
either the estimates directly provided by experts or 
the information supplied by forecasting models, 
assuming expert’s contribution and classified into 
homogenous and nonhomogenous groups.                      
In a homogenous data set, there are a series of 
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expert’s estimates for a true value. An example is a 
study conducted by National Human Exposure 
Assessment Survey (NHEXAS) using the estimates 
of seven experts to obtain exposure assessment in 
residential ambient, residential indoor and personal 
air benzene concentrations in U.S. EPA's Region V, 
experienced by the nonsmoking, non-occupationally 
exposed population. These experts were selected by 
a peer nomination process. Individually elicited 
judgments were gathered from the experts during a 
2-day workshop. In a nonhomogenous case, there is 
an expert’s estimate for a true value. An example is 
found in a weather precipitation research study 
among expert meteorologists at UMCP. The study 
involved four experts who were asked to make 48-
hour precipitation forecasts projections. In the field 
of meteorology, a 48-hour forecast of precipitation is 
considered moderately difficult, and requires 
specialized skills. The forecast were conducted on 
three different days for cities of Orlando, Seattle, 
San Francisco, New Orleans and Detroit. In utilized 
case studies, there is a wide range of reasons 
explaining the errors of estimates. This list includes, 
but not limited to, study topic or subject matter, 
expert’s characteristics, career affiliation, academic 
degree, field of expertise, or years of experience.  
Hoffmann, et al. (2006) show that variability in best 
estimates differs by professional background and 
discipline. Respondents who identify government as 
their primary career setting have tighter ranges than 
those whose careers have been primarily in 
academia, industry, or multiple sectors. Those with 
significant career experience in multiple sectors 
have the largest ranges, followed by those in 
industry and academia. This study also reports those 
with master’s degrees have the least confidence in 
their best estimates, and veterinarians have the most. 
The field of expertise is also reported as a significant 
matter, in such as way that relative to microbiology 
(bacteriology, food science microbiology, 
microbiology, and area pathology), those who 
identified their field as “public health” (public 
health, public health epidemiology, and 
epidemiology) have ranges that are larger than the 
microbiology group and veterinary medicine had 
ranges that are smaller than the microbiology group.  
For the forecasts obtained by model, in addition to 
model inputs and assumptions, there is a series of 
reasons listed to explain the error of forecasts such 
as model types, forecast period and projection 
horizon, forecast accuracy measures used, additional 
information that becomes available later, the size of 
the error, seasonal and geographical errors, etc. 
Although the impact and consequences of factors 
affecting the estimates such as experts’ expertise, 

calibration, dependencies, reliability, gender, or 
ethics were duly noted, variations in accumulated 
data and heterogeneity among experts were accepted 
as an inherent variability and a means of quantifying 
and comparing the uncertainties about parameters of 
interest. 

1.4 Selection of forecast accuracy measure  
According to Armstrong and Fildes (1995), the 
objective of a forecast accuracy measure is to 
provide an informative and clear understanding of 
the error distribution. Theoretically, when the 
forecast errors are randomly structured, the form of 
the forecasts is independent of the selected accuracy 
measure. Otherwise, it is generally accepted that 
there is no single best accuracy measure, and 
deciding on the assessment method is essentially 
subjective. In this study, a simple form of relative 
error (E) is selected as the forecast accuracy 
measure, since it offers a number of desirable 
properties:  
E = u’/u , u>0          (2)  
u: the quantity of interest, u′: experts’ opinions        
[1] Scale-Independence: Relative error is 

independent of scale or level of series and gives 
an indication of how good a measurement is 
relative to the size of the thing being measured.    

[2] Outliner-Independence: Absolute performance 
measures may produce very big numbers due to 
outliers, which can make the comparison of 
different estimates not really feasible. In 
contrast, relative accuracy measures eliminate 
the bias introduced by possible trends, seasonal 
components and outliers.   

a. series outliner independence: measure is not 
affected by large errors associated with outliner 
observation  

b. error outliner independence: measure is not 
affected by large errors associated with outliner 
errors 

[3] Sensitivity: measure is responsive to small 
changes in error 

[4] Stability (Reliability): measure is repeatable;  
[5] Correlation Validity (Interpretability): measure 

is related to specific issue of decision-making  
[6] Simplicity: measure is easy to use. 
[7] Typicality: measure is representative of its 

underlying distribution.  It has been shown by 
Chen and Yang (2004) that Mean Square Error 
(MSE) is the optimal selection when the errors 
are normally distributed.    

2 CONSTRUCTION OF THE LIKELIHOOD 
AND POSTERIOR  

2.1 Homogenous Data 



In the case of homogenous data type, the available 
information regarding the quantity of interest (u) is 
comprised of experts’ estimates (u′1...u′n) and 
evidence or relative error of estimates (E1...En).         
The error distribution can be characterized in terms 
of finite set of parameters, i.e., if lnE is normally 
distributed, E is a lognormal distribution: 
  
      : is the mean of the error distribution,  
      : is the standard deviation of the distribution 
 

                       (3) 
 

 
The error distribution (E1...En) represents the 
likelihood function of errors given the parameters: 

      
        (4) 

 
The posterior distribution of the set of likelihood 
parameters is: 

    
 

 
        (5) 

 
In constructing the likelihood function in terms of 
relative errors, the relation between the distribution 
of relative errors,  f(E), and the distribution of 
estimates,  f(u'), must be established:  
 

                       (6) 
 
 
By substituting in Equation 4: 

 
 

                        (7) 
 
 
By de-conditioning this distribution from E50 and σE, 
the likelihood function for new estimates can be 
obtained (this is likelihood averaging process, 
another approach can also be made by posterior 
averaging):  

     
         (8) 

 
The new expert’s estimates can now be updated 
using general Bayes’ model. The mean of this 
posterior (µ), as the distribution marker, is compared 
with the true value (µ/u), in order to determine if and 
how much the formulated likelihood function has 
been able to reduced the error of estimates.   

2.2 Nonhomogenous Data 
In case of nonhomogenous data set, there is one 
expert estimate for each true value. The available 

information regarding true values of ( nuu ...1 ) is 
comprised of experts’ estimates ( nuu '...'1 ) and 
evidence or relative error of estimates ( nEE ...1 ).          
The error distribution can be marginalized in terms 
of a finite set of parameters (θ ), which by itself is a 
variable characterized by a population variability 
distribution of g(θ). This distribution is symbolized 
by a ‘hyper-parameter’ (ω ): 
 
                (9) 
 
                (10) 
 
 

               (11) 
 
 
 
The posterior expected distribution is: 
 
                (12) 
 
 
 

               (13) 
 
 
 
The mean of this posterior, (µ), as the distribution 
marker, is compared with the true value, (µ/un), in 
order to determine if and how much the formulated 
likelihood function has been able to reduced the 
error of estimates.   

2.3 Empirical Assessment of Experts’ Errors in 
Different Disciplines 

The histogram of experts’ relative errors shows that 
over 45% of relative errors are equal or close to one 
(expert estimate ~ true value), about 45% of data 
points are falling between (1 – 2) and 5% falling in 
the range of (2 – 3).  The average relative error is 1.2 
and only 5% among all empirical relative errors data 
are greater than 3. Table 1 shows the best fitted 
probability distributions for relative errors of 
experts’ estimates. Considering the producer risk of 
5% (α=0.05), lognormal is found to be among the 
top fits. The distribution fitting tests point to 
Wakeby and Cauchy distribution as the first best fits. 
This seems logical since, i.e. Cauchy is a ratio 
distribution (E is the ratio distribution constructed 
given two stochastic variables u' and u). 
Additionally, a ratio or proportion distribution is 
often heavy-tailed, as it is in this analysis.                    
The random variable associated with this 
distribution comes about as the ratio of two 
Gaussian distributed variables with zero mean, 
therefore, the Cauchy distribution is also called the 
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normal ratio distribution. The other best fits are Log-
Logistic, Burr, and Dagum distributions, which are 
continuous probability distributions for a 
nonnegative random variable. The Pearson 
distribution is also a fit since it can visibly contain 
skewed observations. Finally, the lognormal 
distribution fitting arises when independent random 
variables are combined in a multiplicative fashion, 
as expected in the application of relative errors.    
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Descriptive Statistics: Relative Error (Minitab®) 
Variable               N     Mean   StDev      Min   Median      Max 
Relative Error 1923   1.2322  1.5146  0.0003    1.0008 21.2766 

 
Figure 1. Distribution of Empirical Relative Errors 

 
 

Table 1. Best Fitted Distribution for Experts’ Relative Errors 

Best Fitted 
Distribution  

(MathWave-EasyFit) 

Kolmogorov 
Smirnov 

Anderson 
Darling 

Chi-
Squared 

Rank Rank Rank 
Wakeby 1 1 1 
Cauchy 2 2 2 
Dagum (4P) 3 5 5 
Log-Logistic (3P) 4 4 4 
Burr (4P) 5 3 3 
Burr 6 7 7 
Dagum 7 6 6 
Pearson 6 (4P) 8 8 8 
Lognormal (3P) 9 9 9 

2.4 Assessment of Likelihood Functions 
In the Bayesian analysis, the likelihood function for 
homogenous data (Equation 8) is used in general 
Bayesian formalism (Equation 1) to develop the 
posterior (the analyst’s updated knowledge about the 
unknown) and calculate the posterior mean. For the 
nonhomogenous data, the application of formulated 
likelihood distribution leads to Equation 13.                
Normally, in a general Bayesian approach, posterior 
is developed independent of the form of priors.           
In fact, this approach provides a basis for defining 
expertise of information sources (in the matter of 

estimating true value) relative to the decision maker. 
Additionally, if the decision maker believes, as 
would normally be the case in consulting experts, 
that the prior information should have little or no 
impact on the posterior distribution, a flat prior 
would be a proper modeling choice (Edwards, 
1963). Flat or non-informative priors in Bayesian 
analyses are very important for two reasons. First, 
they may reflect the true state of current knowledge.  
Second, it may be required to construct reference 
replica against models containing subjective 
information. In both cases, the goal is to let the data 
drive the analyses, which can be evaluated by 
comparing results with outcomes of the assessment. 
To compare the results of the Baysian calibration, 
the mean as the posterior marker is compared with 
the observed or true values to assess the error of 
updated estimates.  According to Christensen and 
Huffman (1985), the most often used posterior 
markers have been the mean, median, and mode of 
the posterior, with no consensus among experts on 
which is the most appropriate. Barnett (1982) states 
that there would seem to be no other useful criterion 
for choosing a single value to estimate true value 
than to use the most likely value, unless we 
incorporate further information on the consequences 
of incorrect choice of true value. Berger (1980) 
states the mean and median are often better 
estimates than the mode. Cox and Hinkley (1974) 
state that if it is required to summarize the posterior 
distribution in a single quantity, then the mean is 
frequently the most sensible. In particular, if the 
prior density is exactly or approximately constant, 
the use of the mean of the likelihood with respect to 
the parameter is indicated. Results in Table 2 reveal 
285% overall average improvements with 77% of 
estimates improved, applying the likelihood function 
developed by relative errors in all homogenous (H) 
and nonhomogenous (NH) cases. To calculate the 
average improvements, the mean of the posterior is 
compared with the true value. The error of Bayesian 
updating is then weighed against expert’s error. The 
amount of reduction in error is presented as 
percentage, which reflects the average of 
improvements using Bayesian updating in each case. 
The graphical presentation can be found in Figure 2. 
The results obtained confirm that experts’ errors of 
estimates are reduced by application of formulated 
likelihood distribution.  
Table 2. Bayesian Treatment  

Case #  H/NH Average Improvement Estimates Improved 
1 H 368% 71% 

2 NH 335% 71% 
3 NH 208% 100% 
4 NH 72% 100% 
5 NH 91% 71% 



6 NH -75% 83% 
7 NH 120% 67% 
8 NH 63% 67% 
9 NH 78% 67% 

10 NH 54% 71% 
11 NH 316% 100% 
12 NH 1989% 57% 
13 NH 555% 71% 
14 NH 509% 86% 
15 NH 220% 86% 
16 NH 1171% 100% 
17 NH 89% 57% 
18 NH 72% 86% 
19 H 61% 80% 

20 NH 264% 57% 
21 NH 98% 86% 
22 NH 524% 57% 
23 NH 83% 86% 
24 NH 87% 86% 
25 NH 44% 57% 
26 NH 96% 100% 
27 NH 237% 57% 
28* H 243% 79% 

Average 285% 77% 
Minimum -75% 57% 
Maximum 1989% 100% 
*Data provided by R. M. Cooke from TU Delft University 
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Figure 2.  Bayesian Treatment of Empirical Data 

 
For the sake of moderation in the assessment of 
results, cases with improvement of over 500% are 
considered improvements with low probability in 
occurrence and eliminated from calculations.            
Percentages are recalculated as shown in Table 3 
and displayed with Figure 3. The positive results 
obtained after these modifications still confirm that 
experts’ error of estimates are reduced by 
application of formulated likelihood distribution 
function.  
 

Table 3. Bayesian Treatment – modified data 

Average Improvement  
of  Error  %Estimates Improved 

368% 71% 
335% 71% 
208% 100% 

72% 100% 
91% 71% 
-75% 83% 
120% 67% 
63% 67% 
78% 67% 
54% 71% 

316% 100% 
220% 86% 
89% 57% 
72% 86% 
61% 80% 

264% 57% 
98% 86% 
83% 86% 
87% 86% 
44% 57% 
96% 100% 

237% 57% 
243% 79% 

Average = 140% Average = 78% 
Min = -75% Min = 57% 
Max = 368% Max = 100% 
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Figure 3.  Bayesian Treatment –after Modifications 

2.5 Conclusion 
The empirical assessment of experts’ relative error 
of estimates revealed that over 45% of errors were 
close to one (expert estimate ~ true value). 
Additionally, lognormal was identified as one of the 
best fitted distributions, considering the selection of 
relative error as the forecast accuracy measure.          
The study also showed 285% average improvements 
in experts’ estimates with 77% of estimates 
improved, applying the likelihood function 
developed by relative errors for homogenous and 
nonhomogenous cases.                  
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